Preparation of reduced bovine Cu, Zn superoxide dismutase
نویسندگان
چکیده
منابع مشابه
The Cu, Zn Superoxide Dismutase: Not Only a Dismutase Enzyme
The Cu,Zn superoxide dismutase (SOD1) is an ubiquitary cytosolic dimeric carbohydrate free molecule, belonging to a family of isoenzymes involved in the scavenger of superoxide anions. This effect certainly represents the main and well known function ascribed to this enzyme. Here we highlight new aspects of SOD1 physiology that point out some inedited effects of this enzyme in addition to the c...
متن کاملFolding and Aggregation of Cu, Zn-Superoxide Dismutase
1.1 ALS and SOD1 In 1993, a genetic link was established between amyotrophic lateral sclerosis (ALS) and mutant forms of Cu,Zn superoxide dismutase (SOD1) (Deng et al. 1993; Rosen et al. 1993), an antioxidant enzyme that catalyzes the dismutation of the damaging free radical superoxide anion (O2-) to hydrogen peroxide (H2O2) and diatomic oxygen (O2) via cyclic reduction and oxidation of a prote...
متن کاملRedox activation of mitochondrial intermembrane space Cu,Zn-superoxide dismutase.
The localization of Cu,Zn-superoxide dismutase in the mitochondrial intermembrane space suggests a functional relationship with superoxide anion (O2*-) released into this compartment. The present study was aimed at examining the functionality of Cu,Zn-superoxide dismutase and elucidating the molecular basis for its activation in the intermembrane space. Intact rat liver mitochondria neither sca...
متن کاملSequence and structural determinants of Cu, Zn superoxide dismutase aggregation.
Diverse point mutations in the enzyme Cu, Zn superoxide dismutase (SOD1) are linked to its aggregation in the familial form of the disease amyotrophic lateral sclerosis. The disease-associated mutations are known to destabilize the protein, but the structural basis of the aggregation of the destabilized protein and the structure of aggregates are not well understood. Here, we investigate in sil...
متن کاملRole of prokaryotic Cu,Zn superoxide dismutase in pathogenesis.
Several bacterial pathogens possess sodC genes that encode periplasmic or membrane-associated Cu,Zn superoxide dismutases. Since professional phagocytes generate large amounts of reactive oxygen species to control the growth of invading micro-organisms, Cu,Zn superoxide dismutase might protect infectious bacteria from oxy-radical damage and facilitate their survival within the host. This idea h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochemical Journal
سال: 1985
ISSN: 0264-6021,1470-8728
DOI: 10.1042/bj2290087